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The instability of oscillations of a weightless rod with a concentrated mass, sliding periodically along the rod axis is investigated. 
This is the simplest model of a child's swing. The amplitude of the displacement of the mass and viscous friction, due to the air 
resistance, are assumed to small, while the periodic excitation function is arbitrary. Asymptotic formulae for the regions of instability 
(parametric resonance) in three-dimensional space of the system parameters, corresponding to swinging of the swing, are obtained 
and investigated. Examples are given. © 2004 Elsevier Ltd. All rights reserved. 

The problem of the swing is undoubtedly one of the classical problems in mechanics. It is well known 
that, to swing a swing one must crouch in the middle vertical position and straighten up in the extreme 
positions, i.e. perform oscillations with a frequency which is approximately double the frequency of 
natural oscillations of the swing. While swinging, to maintain the oscillations one can crouch half as 
often. Despite the popularity of the swing, in the literature on oscillations and stability [1-14], where 
this problem is referred to, there are no general formulae for describing the regions of instability, which 
explain the phenomenon of the swinging of a swing. The problem of the instability of a swing is solved 
below using an approach which involves the use of the derivatives of the monodromy matrix with respect 
to the parameters [15-18]. The method of solving the problem is rigorous and is based on an analysis 
of the behaviour of Floquet multipliers. The results of this paper were briefly described in [19]. 

1. B A S I C  R E L A T I O N S  

The simplest model of a swing is described by the oscillations of a weightless rod with a concentrated 
mass, which slides periodically along the rod axis, this scheme describes the oscillations of a pendulum 
of variable length, which varies periodically with time (Fig. 1). The amplitude of the displacement of 
the mass or the change in the pendulum length are assumed to be small. The small viscous friction due 
to the air resistance is taken into account. 

The equation of motion of a swing (a pendulum of variable length) [1, 3] is derived using the theorem 
of the change in the angular momentum and taking viscous friction into account and has the form 

(m12{))'+ ~120 + mglsinO = 0 (1.1) 

where m is the mass, l is the length, 0 is the angle of deflection of the pendulum from the vertical, ? is 
the coefficient of viscous friction, due to the air resistance, and g is the acceleration due to gravity. The 
dot denotes a derivative with respect to time t. It is assumed that the pendulum length varies as follows: 

21t 

l = 10+atp(~t), ~ ( x ) d ~  = 0 (1.2) 
0 

where l 0 is the mean length of the pendulum, a and D are the amplitude and frequency of the excitation, 
respectively, and 9(x) is an arbitrary continuous periodic function of period 2~ with a mean value of 
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zero. The amplitude a and the friction coefficient T are assumed to be small. It is required to determine 
for what values of the parameters the trivial equilibrium position of the system 0 = 0 becomes unstable 
which leads to swinging of the swing. 

We will introduce the following dimensionless variables and parameters 

~ = ~ t ,  e = a  l~=m~/~  (o= 1 / ~  --120 (1.3) 
10, , ~ , x I = 0 ,  x 2 = 102~ 

Then Eq. (1.1) can be written in the form of a system of first-order equations 

dXl (~)2X2 ' dx2 _c021sinxl_~O)x2 , l  
a-x- = d-'~" = l o ~o = 1 + ~q~(x) ( 1 . 4 )  

In these variables the requirement that the periodic function ~0(x) should be continuous can be relaxed, 
assuming it to be only piecewise-continuous. Similar variables were used in [20] to solve an optimal 
control problem. 

The right-hand sides of the first two equations of (1.4) are non-linear functions of the vector 
x = (Xl, Xl) and are periodic in x with period 2n. Equations (1.4) depend explicitly on three independent 
parameters ~0, E and 13, where the last two are assumed to be small 

1, 1 (1.5)  

It is required to obtain the regions of instability of the trivial solution x = 0 (parametric resonance) 
in the three-dimensional space of the parameters p = (e, [~, co). 

If the problem of a swing is considered for the periodic function ~0(x0 + x), where d0 is some phase 
shift, this problem of instability is equivalent to the initial problem, which can be shown by making the 
time conversion x' = d0 + x. Hence, the phase shift of the periodic function is unimportant for the fact 
of the instability of the motion, but it has a considerable effect on the swinging time [20]. 

2. SOLUTION OF THE PROBLEM OF INSTABILITY 

By Lyapunov's theorem one can judge the stability and instability of a non-linear system (1.4) from the 
linear approximation [21]. Linearization of this system leads to the equations 

-- G x  (2.1)  

o:11 0  22, -0)2[ 1 + EIp('C) ] -~¢0 

The fundamental matrix X(t) of system (2.1) is found from the matrix differential equation with initial 
conditions 

X = G X ,  X ( 0 )  = I ( 2 . 3 )  
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where I is the identity matrix, and is called the matricant. The monodromy (Floquet) matrix is defined 
by the equality F = X(T) [21, 22]. To investigate the stability of the linear system (2.1), (2.2) we will 
use Floquet's theory, according to which a linear system with periodic coefficients is stable if all the 
eigenvalues p (multipliers) of the monodromy matrix F are less than unity in modulus, and unstable if 
at least one of the multipliers is greater than unity in modulus. 

Suppose we know the monodromy matrix F0 = F(p0) for a certain n-dimensional vector of the 
parameters P0. We give the vector of the parameters an increment in the form p = P0 + Ap, as a result 
of which the matrix G and, consequently, the matricant X(t) obtain increments also. This correspondingly 
leads to a change in the monodromy matrix F. Expressions have been obtained in [15, 16] for the first 
and second derivatives of the monodromy matrix with respect to the parameters in the form of integrals 
over a period 

T 

~F _ Fo~Hk(x)dx (2.4) - 

0 

O~i~Py~2F = F°[~Hq(x)dXLo + "[Hi(X)o -o ny(;)d; , ,  dx + o Hy(X) ',o Hi ( ; )d ; :  (2.5) 

where 

-~ OG 
Hk(l :  ) = X 0 (x)~'p-~k(P0, x)X0(x), 

. - t . .  0 2 G  . 
H/j(x) = •0 ( x ) ~ ( P 0 ,  x)X0(x), i , j , k = l  . . . . .  n 

The zero subscript denotes that the corresponding quantity is taken at p = P0. 
Note that, to calculate the derivatives (2.4) and (2.5) it is only necessary to know the matricant X0(t) 

and the derivatives of the matrix G with respect to the parameters, calculated at p = P0. Using the 
derivatives (2.4) and (2.5), we can write the increment of the monodromy matrix in the form 

" /gF 1 n - ~2  F 

F(Po + Ap) = F o + kEffi 1 ~pkApk + ~ i, Zj = 1 OPiOpjApiAPJ + "'" (2.6) 

Knowing the derivatives of the monodromy matrix we can calculate the values of this matrix in the 
neighbourhood of the point P0 and, consequently, estimate the behaviour of the multipliers (the 
eigenvalues of the monodromy matrix F), responsible for the stability of system (2.1) when the parameters 
change. 

If we put e = 0 and ~ = 0 in relations (2.1) and (2.2), from Eqs (2.3) it is easy to obtain the matricant 
and the matrix inverse to it 

x0...:ll cos°..sino.II x01...:ll cos° 
-osincot cosot  co sincot 

Hence, when e = 0 and 13 = 0 the monodromy matrix has the form 

-I . 

-CO s l nco t  

COS O)t 

(2.7) 

F o = Xo(2n) ( 2 . 8 )  

The eigenvalues of this matrix (the multipliers) are 

Pl,2 = cos2~co + isin2/to (2.9) 

For all values of co ¢ k/2 (k = 1, 2 . . . .  ) the multipliers are complex-conjugate quantities and lie on the 
unit circle (stability). For small changes in the parameters e, ~ and co in the neighbourhood of the point 
P0 = (0, 0, co), co,  k/2 (k = 1, 2 ... .  ) by virtue of the continuity the multipliers remain complex-conjugate 
quantities. We then have the following quadratic equation for the multipliers 

2 p +Ap+B = 0 (2.10) 
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where the free term, by Liouville's formula [21], is described by the expression 

B = ex t r G d t  --, exp(-2~[3to) 
\ 0  J 

Since, by Vieta's theorem, from relations (2.10) and (2.11) where It > 0 we have 

pip2 = B < 1 

(2.11) 

(2.12) 

for the complex-conjugate multipliers, it follows from inequality (2.12) that ] Pl, 21 < 1. Hence, a small 
change in the parameters e, 13 and to, when 13 > 0, in the neighbourhood of the point P0 = (0, 0, to), 
co ~ k /2  shifts the multipliers inside the unit circle, which indicates asymptotic stability. 

Consequently, instability (parametric resonance) can only arise in the neighbourhood of the points 

P0:e  = 0, 13 = 0, to- -  k12, k = 1 ,2 . . .  (2.13) 

in which the multipliers are doubled: Pl = P2 = cosnk. 
To obtain the regions of parametric resonance we expand the monodromy matrix F in the 

neighbourhood of the point P0 in a Taylor series in the parameters e, 13 and Ato = to - k/2: 

OF ~F^ ~F 
F(p)  = F(p  o) + ~-~e + ~-~p + ~-~Am + ... (2.14) 

From formulae (2.4), using relations (2.2), (2.7) and (2.8), we calculate the values of the derivatives 
~F/be, 3F/313 and bF/3to at p = P0. As a result, we have from Eq. (2.6), apart from first-order infinitesimal 
terms, 

F(p)  = cosgk 

3 1 
1 + ~ k n b k e  - [ k n ~  

3 2  - k/tAto- ~k nak8 

4 3 
~xAto - ~nake 

(2.15) 

Here we have introduced the Fourier coefficients of the function cp(x) 

2x  2~ 

a k = q~(x)coskxdx,  b t = ~ 9(x)sink~dz, k = 1,2...  
0 0 

For the matrix (2.15) we obtain the approximate values of the multipliers 

Pl.2 = (-1)t(1 - kTt[ll2) + n,]-D 

(2.16) 

(2.17) 

3~a,2 2 D = k2r2~. 2 -  (2AtO) 2, rk = ~ + bk (2.18) 

The system is unstable if at least one of the multipliers is greater in modulus than unity [21, 22]. This 
condition is satisfied when [3 < 0 and the system is unstable, while when 13 > 0 this condition is satisfied 
only when ~ > ~lk/2. Hence, taking expression (2.18) into account, we obtain that the instability region 
of (parametric resonance) lies inside the half of the cone 

k2132/4 + 4((0 2 2 2 2 -k /2 )  < k rk8 , ~_> 0 (2.19) 

which is connected with the half space 13 < 0 (Fig. 2). The instability regions are shown hatched. 
Inequality (2.19) can also be represented in the somewhat more convenient form 

(1~/2) 2 + (2to/k  - 1) 2 < r2e. 2, 1~ -> 0 (2.20) 

Note that formulae (2.19) and (2.20) are approximations of the first order for the instability regions. 
It follows from them, in particular, that the kth resonance region in the first approximation depends 
only on the kth Fourier coefficients of the periodic excitation function. 
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Putting 13 = 0 in inequality (2.19), we obtain the zones of parametric resonance when there is no 
friction 

- k r k l 2  < e-l  ( o~ - k12 ) < krkl2 (2.21) 

The section of the cone (2.19) by the plane [~ = const > 0 gives the zone of parametric resonance, 
bounded by a hyperbola (Fig. 3). The asymptotes of this hyperbola can be found from inequalities (2.21). 
When there is friction (13 > 0) the minimum amplitude of the excitation of resonance, by inequality 
(2.19), is 

emi" = ~/(2r k) (2.22) 

The section of the region (2.19) by the plane e = const represents half an ellipse with semiaxes 
I m - k /2  [ = k r ~ / 2  and 13 = 2rk~ (Fig. 4). Note that as the friction coefficient [3 increases, the width of 
the resonance zone narrows with respect to the frequency t0 and disappears when 13 > 2r~. 

We will analyse the evolution of the resonance regions as the resonance number k increases. It is 
well known that if a periodic function q~(x) is continuous together with its sth order derivatives, then 
for the Fourier coefficients ak and bk we have the relations a~: ~ + 1 ___) 0, bek s + i + 0 as k + ~ .  Hence, 
for continuously differentiable functions, the quantities kr~ tend to zero as k + oo. This indicates that 
the cone (2.19) narrows as k increases. Hence, it also follows that for fixed ~ and as k increases, the 
minimum amplitude of the excitation of resonance (2.22) increases without limit. This explains the fact 
that it is easier for a swing to swing at lower resonances k = 1, 2, whereas for higher values o fk  greater 
excitation amplitudes and forces are required to attain resonance. 

Reverting to dimensional quantities, we obtain from relations (1.3) and (2.13) that swinging occurs 
at excitation frequencies f~ close to the critical values 

a k = 7 ,  , k = l , 2  . . . .  (2.23) 

Note that "]g/lo is the frequency of natural oscillations of a pendulum of mean length 10. The corres- 
ponding regions of resonance, by formula (2.20), are described by the inequalities 

yZl 0 ( ~ ) 2  r~a 2 
+ - 1 < 2 (2.24) 

4 g m  2 l o 

similar to the inequalities which describe the regions of instability of a pendulum with a vertically 
oscillating suspension point [17]. The difference is that the right-hand sides of the inequalities depend 
on the resonance number k. This difference can obviously be explained by the fact that an acceleration, 
proportional to the square of the excitation frequency occurs in the equation of the oscillations of a 
pendulum with an oscillating suspension point. 
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3. T H E  D E G E N E R A T E  CASE 

When ak = 0 and bk = 0 we have rk = 0 and the first-order approximations (2.19) and (2.20) degenerate 
into a straight line 1~ = 0, ¢0 = k/2. In this case, it is necessary to use higher-order approximations to 
obtain the resonance regions more accurately. 

In view of the degeneracy of the linear terms in e in formulae (2.14) and (2.15), in this case we have 
the following approximate expression for the monodromy matrix 

F(p)  = F(Po) l~2F 2 ~F~ ~ F .  + + +  - zxco + . . .  (3.1) 

The point P0 is given by formula (2.13). Carrying out the calculations using formula (2.5) and also 
relations (2.2), (2.7) and (2.8), we obtain 

F(p)  = cos~k 

1 2 1 1 + ~kn~ke - ~kn~ 

-kgAo~ + ~k2n(~k - ~k)E 2 

4 2 ? AC0 + n(;k + TIDE 

1 2 1 
(3.2) 

In this formula we have used the following notation for the coefficients 

2x 2~ t 
3 3k ~k = -~'~ f ¢p2(t) sinktdt + ~-~ I ¢P(t)IcP(x)c°skxdxdt 

o 0 0 

2r¢ 2x t 
3k ~k = 3 f ¢pe(t)cosktdt + 4"~ f tp(t)itp(z)sinkzdzdt 

0 0 0 

2n 2~ t 

"k = ~ ~ ¢p2(t)dt_ 9k 4"~ I q~( t ) sinkt l cP('O c°s kxdxdt 
o 0 0 

(3.3) 

The system is unstable if at least one of the eigenvalues (multipliers) of the matrix (3.2) is greater 
than unity in modulus. Carrying out calculations similar to the previous ones, we obtain that the instability 
region of (parametric resonance) in the degenerate case ak = O, bk = 0, is given by the inequalities. 

2 2 

~2+4  - 1 +  < R k e ,  ~_>0 (3.4) 

2 2 
Rk = ( 3 . 5 )  

Note that when rig ~ 0 the resonance regions (3.4), unlike (2.19), are not symmetrical about the plane 
o) = k/2. If Rk > [ rlk l, the resonance regions lie on both sides of  the plane co = k/2, while when 
Rk <- I1]k [ they lie on one side of this plane. 

The section of the region (3.4) by the plane [5 = const > 0 gives a resonance zone bounded by a 
generalized hyperbola. In Fig. 5 we show the case Rk > [ qk [, when the resonance zones (shown hatched) 
lie on both sides of the vertical ¢0 = k/2. From inequality (3.4) we obtain directly the minimum value 
of the amplitude for which parametric resonance occurs 

(nnn = 

For continuous functions cp(x) this quantity tends to infinity when k increases without limit. 
When there is no friction ([5 = 0) we obtain from formula (3.4) inequalities which confine the 

resonance frequency between two parabolas (Fig. 5) 

+ + k e2k 
= + -~--(R k :1: rID (3.6) < co < cok; co, 
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In dimensional quantities, we obtain from inequalities (3.4), taking relations (1.3) into account, 

~/2/0 ( ~ _  1 + 1]k(a~2~ 2 R2(a'~ 4 

4gm 2 + 2 \loJ J < "4-~0) (3.7) 

The critical frequencies f~k are given by formula (2.23). Correspondingly, for T = 0 we have the resonance 
zones 

( 1(~0)2 ) Zk < t) < X~; X~ = f~k 1 + ~ (Rk q:'qk) (3.8) 

4. E X A M P L E S  

We will consider, as the first example, the excitation of oscillations using a periodic piecewise-constant 
function [5, 12] 

1, 0<x___rt (4.1) 
~(x) = -1,  n < x < 2 n  

For this function we have 

4 3 
a2k_ l = 0, b2k-l = g ( 2 k - 1 ) '  r2k-l = l t ( 2k -1 )  (4.2) 

a2k = b2k = r2k = 0; k = 1,2 . . . .  

Hence, by inequalities (2.24), all the odd regions are described by the formula 

< 9a2 k = 1, 2 . . . .  (4.3) 721""~0 1"(~2~_i 1) 2 212(2k_ 1) 2, 
4gin 2 

while the even resonance regions are degenerate in the first approximation. It can be seen directly from 
this formula how rapidly the cone of instability contracts as k increases. 

If we put ~ = 0 in (4.3), we obtain a formula for the resonance zones of the system without friction 

[ ~ < [ ~ < f l k ;  [2~ = 2k 1 l + x l 0 ( 2 k _ l )  (4.4) 

When k = I this result is identical with that obtained previously ([5, formulae (4.74)-(4.76)], if we put 
= 2£00 + AD in (47.4) and use the expansion tg (~£o0/(2~)) = 1 + ~zAD/(4o~0); see also the results in 

[6], which have a more complex form). 
For even resonances, using formulae (3.3) we calculate ~2k = 0, ~ = 3/2, rl2k = 3/4, R2k = 3/2 and, 

by inequalities (3.7), we obtain the instability regions 

)'2/0 
+ ( ~ 2 k - 1  3(aN2N2 9 ( a ~  4, k = 1,2, (4.5) 

4gm 2 + 8~o) ) < 16~,loJ "'" 

It is interesting to note that the resonance region remains unchanged for all critical frequencies ~2k. 
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W h e n  there is no friction (y = 0), f rom formulae (3.8) and (2.23) we obtain a relation for the resonance 
zones 

1 g ~ ( 1  _ 9(a']2"] < f~ < ~ ¢ ~ ( 1  3{a'~2"~ 
8k, loJ ) + "~[,~) J (4 .6)  

As the second example we will take the periodic funct ion in the form ~p(x) -- cos t  - sin2x. Then  

a I = 1, b 2 = - 1 ,  a 2 = b I = 0, r 1 = r 2 = 3/4,  a k = b k = r k = 0,  k = 3 , 4  . . . .  

Hence,  all the resonance regions are degenerate ,  apart  f rom the first and second. 
By relations (2.23) and (2.24), we have for the first resonance  region 

)t2/O + (  ~ _ 1 ) 2 <  9a2 

4gm 2 2 g ~ o  16l~ (4.7) 

Hence,  when there is no friction (7 = 0) we obtain a relat ion for the first resonance zone 

(4.8) 

Similar relations are also obtained for the second resonance.  They  cor respond to inequalities (4.7) 
and (4.8) when  2~/g/lo is replaced by ~/g/lo. 

The regions obtained coincide (in the first approximation)  with the corresponding resonance regions 
for the case o f  the functions cp(x) = cos x and cp(z) = sin 2x. 
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